УТВЕРЖДАЮ
Генеральный директор ООО «ТЕ» А.В. Якунин
«»2023 г.
низкопрофильные унифицированные модули
ЭЛЕКТРОПИТАНИЯ
Модули серии «TESAV»
Технические условия
ТЛДР.436610.105 ТУ
2023 г.
$\angle 0 \angle J$ 1.

		Соле	ржание					
				ния				3
ен.								
примен			-			метры и размеры		
В. П								
Перв.								
						параметрам и электрическим реж		
		4.4 П	редельно доп	устимые	е знач	ения электрических параметро	в и режимов	
								10
		4.5 T	ребования сто	йкости і	к внец	ним воздействующим факторам ((ВВФ)	10
				-		ости		
			-					
٠,								
B. <i>№</i>								
Справ.						ия и их состав		
C						я		
			-					
						ваниям к конструкции		
						ваниям безопасности		
						рических параметров и режимов з		20
						ваниям по стойкости к внешним		27
е								
дата		-						
сь и		-						
пис								
Подпис		_						
		_						
		Лист	регистрации и	изменен	ий			45
Инв. Nº дубл.								
V² Д.								
4B. /								
Z,								
_								
Взам. инв. №								
ИНЕ								
зам.								
Bŝ								
га								
1 да								
Cb V								
Подпись и дата						THE 40.00	10.005.003	
70						ТЛДР.43661	10.005 TY	
	Изм.	Лист	№ докум.	Подп.	<i>Дат</i> а			
7.	Разра	б.	Дуров				Лит. Лист Л	Іистов
Инв. Nº подл.	Прове	рил	Клепиков			Модули электропитания	2	23
Nº r						Серии "TESAV"	000 «TE»	
1HB.	Н.кон	тр.	Торбин			• "	г. Воронеж	
Z	Утв.		Якунин			Технические условия	т. Боронеж	

1 Область применения

1.1 Настоящие технические условия (далее — ТУ) распространяются на унифицированные модули электропитания серии «TESAV» (далее-модуль) номинальной мощностью от 50 до 500 Вт с высокими удельными характеристиками, с питанием от сети переменного тока напряжением 115; 230 В расширенным температурным диапазоном от -60 °C до +125 °C, предназначенные для внутреннего монтажа в аппаратуре.

2 Сокращения

В настоящих ТУ приняты следующие сокращения:

ВВФ - внешние воздействующие факторы;

ЗИП - запасные инструменты и принадлежности;

КД - конструкторская документация;

КТЗ - конструктивно-технологические запасы;

НКУ - нормальные климатические условия

(температура воздуха от 15°C до 35°C,

относительная влажность воздуха от 45% до 80%;

атмосферное давление $8,6*10^4$ до $10,6*10^4$ Па (от 645 до 795 мм рт.ст.);

НТД - нормативно-техническая документация;

ОТК - отдел технического контроля;

ПСИ - приёмо-сдаточные испытания;

СКК - служба контроля качества;

ТП - технологический процесс;

ТД - технологическая документация;

ТУ - технические условия;

ЭМС - электромагнитная совместимость;

ЭРИ - электрорадиоизделия;

XX - холостой ход;

Инв. № дубл.

ИНВ.

Взам.

Подпись и дата

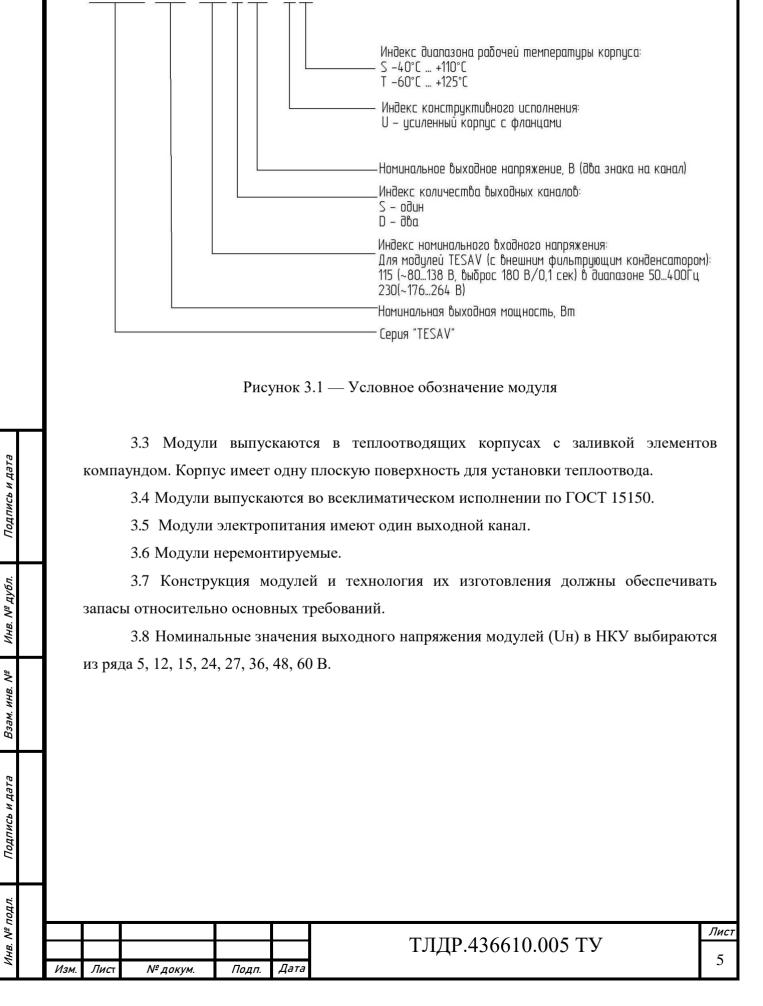
КЗ - короткое замыкание.

" НОСТ № ДОКУМ. ПОДП. Дата

ТЛДР.436610.005 ТУ

3 Классификация, основные параметры и размеры

3.1 Типы выпускаемых модулей, их основные характеристики и сервисные функции указаны в таблице 1.


Таблица 3.1 – Типы модулей, их основные характеристики и сервисные функции.

Тип модуля	Габаритные размеры, мм	Масса, г, не более	Номинальная выходная мощность, Вт	Номинальное входное напряжение и его диапазон, В	Количество выходных каналов	Дистанционное выключение	Подстройка выходного напряжения	Вывод CASE (корпус)	Параллельная работа	Выносная обратная связь	Энергетическая плотность, Вт/дм ³
TESAV50	84,5×52,7×12,85	100	50		1, 2	+	+	+	-	-	994
TESAV100	107×67,3×12,95	190	100	≈115 (80138, 180 В/0,1 сек)	1	+	+	+	+	+	1191
TESAV200	107×67,3×12,95	190	200	≈230 (176264)	1	+	+	+	+	+	2382
TESAV500	122×84,2×15	300	500		1	+	+	+	+	+	3608

Примечание: Знаки «+» и «-» обозначают наличие или отсутствие сервисной функции соответственно.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

3.2 Условное обозначение модуля показано на рисунке 3.1

TESAV 200-115S27-UT

В особых случаях, по согласованию с предприятием-изготовителем, допускается изготовление модулей с номинальным выходным напряжением в диапазоне от 3 до 80 В (указывается при заказе). 3.9. Для улучшения ЭМС модулей электропитания выпускаются модули фильтров TEFA1, TEFA5, TEFA10, TEFA20, имеющие один выходной канал. 3.10. Пример обозначения при заказе и в КД: TESAV200-115S27-UT ТЛДР.436610.005 ТУ. Лист ТЛДР.436610.005 ТУ *Лис*т Подп. Дата № докум.

Инв. № дубл.

1нв. № подл.

4 Технические требования

4.1 Общие требования

4.1.1 Модули изготавливаются по комплектам конструкторской документации, приведенной в таблице 4.1.

Таблица 4.1 — Перечень комплектов конструкторской документации модулей

Тип модуля	Количество	Обозначение комплекта КД
	выходных каналов	
TESAV50	1	ТЛДР.436614.020 ТУ
TESAV50	2	ТЛДР.436614.021 ТУ
TESAV100	1	ТЛДР.436614.022 ТУ
TESAV200	1	ТЛДР.436614.023 ТУ
TESAV500	1	ТЛДР.436614.024 ТУ

4.2 Требования к конструкции

- 4.2.1 Внешний вид, качество покрытий, габаритные, установочные и присоединительные размеры модулей в соответствии с приложениями В-Н. Описание внешнего вида ТЛДР.436610.005 ОВ.
- 4.2.2 Конструкция должна обеспечивать работу модулей в любом положении и отсутствие механического резонанса при воздействии синусоидальной вибрации в диапазоне частот до 100 Гц при амплитуде виброперемещения 0,5 мм.
- 4.2.3 Выводы модулей должны быть механически прочными и выдерживать без механических повреждений воздействие растягивающей силы не более:
- для выводов диаметром 0,8 мм 10 Н;
- для выводов диаметром 1,0 мм 20 Н;
- для выводов диаметром 1,5 мм 40 Н.

Инв. № дубл.

- 4.2.4 Подключение модулей должно осуществляться пайкой к выводам.
- 4.2.5 Покрытие выводов должно обеспечивать паяемость без дополнительного облуживания в течение 12 месяцев и допускать трехкратную перепайку без нарушения целостности выводов и ухудшения электрических параметров модуля.
 - 4.2.6 Масса модулей не должна превышать значений, указанных в таблице 3.1.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

ТЛДР.436610.005 ТУ

- 4.3.1 Электрические параметры при приёмке и поставке.
- 4.3.1.1~ Установившееся отклонение выходного напряжения модулей в НКУ должно быть не более $\pm 2.0\%$.
- 4.3.1.2 Суммарная нестабильность выходного напряжения (Н Σ) должна быть не более \pm 6 %.
- 4.3.1.3 Нестабильность выходного напряжения при плавном изменении входного напряжения (H_U) и выходного тока (H_I) не должна превышать ± 2 %.
- 4.3.1.4 Температурная нестабильность выходного напряжения модулей электропитания (HT) должна быть не более \pm 3 %.
- 4.3.1.5 Временная нестабильность выходного напряжения модулей (Ht) должна быть не более $\pm\,0.5\,\%$.
- 4.3.1.6 Проверка переходного отклонения выходного напряжения модулей электропитания δUпер, %, состоит в регистрации изменения выходного напряжения каждого канала после воздействия заданного фактора (переходного отклонения входного напряжения, скачкообразного изменения выходного тока) и вычисления переходного отклонения по формуле:

$$\delta$$
Uпер = [(Uмакс.(мин.) – U)/U]· 100,

где Uмакс.(мин.) – максимальное (минимальное) значение выходного напряжения во время воздействия заданного фактора, B;

U — значение выходного напряжения до воздействия заданного фактора, B.

Значение отклонения, вычисленное по формуле, указывают с учетом знака.

Модули считают выдержавшими испытания по требованиям 4.3.1.6, если переходное отклонение выходного напряжения не превышает \pm 10 %.

- 4.3.1.7 Переходное отклонение выходного напряжения модулей (δ Uпер) при воздействии переходного отклонения входного напряжения в пределах норм 4.4.1.1 длительностью фронта не менее 0.5 мс и при скачкообразном изменении выходного тока в пределах от $0.3 \times \text{I}$ ном до $0.9 \times \text{I}$ ном длительностью фронта не менее 0.5 мс не должно превышать $\pm 10\%$.
- 4.3.1.8 Пульсации выходного напряжения от пика до пика при максимальном выходном токе модулей электропитания (Uпул) должны быть не более 2 % от номинального значения выходного напряжения.

Взам. инв. № Инв. № дубл. Под

№ подл. Подпись и дата

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

43.18 Модули должны иметь защиту от перегрузки по выходному току и от короткого замыкания с автоматическим возвратом в рабочий режим после снятия короткого замыкания. Ток, потребляемый модулем при коротком замыкании на выходе любого канала должен быть как минимум в 2,5 раза меньше тока, потребляемого модулем при номинальных значениях входного напряжения и тока нагрузки. Ток начала срабатывания защиты от перегрузки по выходному току для модулей должен быть в диапазоне 1,1×Рмакс до 1,5×Рмакс для всех модулей.

43.19 Модули должны иметь защиту от превышения выходного напряжения и должны обеспечивать ограничение значения выходного напряжения не более 1,3×Uвых.ном с последующим автоматическим возвратом в режим стабилизации после снятия превышения выходного напряжения.

43.1.10 Значение полной потребляемой мощности модулей электропитания в установившемся режиме не должно превышать величины

$$P = 1.25 \times (P_{1MAKC} + P_{2MAKC}),$$

где Рімакс, Р2макс — максимальная мощность первого, второго каналов соответственно, Вт; Для двухканальных модулей Р1макс = Р2макс.

4.3.1.11 Абсолютное значение выходного напряжения при работе на холостом ходу не должно превышать Uвых.ном, с учетом нестабильностей.

43.1.12 Значение тока, потребляемого от сети в момент включения (Івкл), не должно превышать величин, указанных в таблице 4.2.

43.1.13 Модули должны иметь возможность дистанционного выключения путем соединения вывода «ВКЛ» с выводом «-ВХ».

43.1.14 Время установления выходного напряжения (с момента снятия управляющего сигнала с вывода «ВКЛ») должно быть не более 0,1 сек.

43.1.15 Модули должны иметь защиту от перегрева с автоматическим возвратом в рабочий режим после его устранения. Срабатывание защиты от перегрева должно происходить при температуре корпуса модуля для температурного диапазона «S» от $+110~^{\circ}$ C до $+115~^{\circ}$ C, для температурного диапазона «T» от $+125~^{\circ}$ C до $+130~^{\circ}$ C.

4.3.1.16 Модули должны иметь вывод для регулировки выходного напряжения («РЕГ»), обеспечивающий диапазон регулирования (Δ UPEГ) не менее $\pm 5\%$ от Uвых.ном.

4.3.1.17 Нормы кондуктивных индустриальных радиопомех на входных зажимах модулей соответствуют классу А ГОСТ 51318.22-2006 (EN55022-2006), классу В при использовании совместно с модулями фильтров серии TEFA.

4.4 Предельно допустимые значения электрических параметров и режимов эксплуатации

4.4.1.1 Качество входной электроэнергии переменного тока должно соответствовать требованиям, указанным в таблице 4.3.

Таблица 4.3 — Нормы качества электроэнергии переменного тока на входе модулей

Индекс	Ном. входное	Диапазон	Переходное	Длительность
ном. входного	напряжение, В	установившегося	отклонение, В	переходного
напряжения		значения, В		отклонения, с
115	115	~80138	180	0,1
		(=82198)		
230	230	~176264	-	-
		(=175342)		

- 4.4.1.2 Повышенная температура корпуса модулей должна быть:
- для температурного диапазона «S» не более 110 °C;
- для температурного диапазона «Т» не более 125 °C.

4.5 Требования стойкости к внешним воздействующим факторам (ВВФ)

4.5.1 Модули должны быть стойкими к воздействию ВВФ по группе исполнения ЗУ ГОСТ 15150 с дополнениями и уточнениями, приведёнными в таблице 4.4.

Таблица 4.4 – Внешние воздействующие факторы

Дата

Подп.

Наименование воздействующего фактора, единица измерения	Значение
Transfer and the second	воздействующего фактора
Механические факторы	
Синусоидальная вибрация:	
- диапазон частот, Гц;	1 - 2000
- амплитуда ускорения, м/сек2 (g);	200 (20)
- амплитуда виброперемещения, мм	0,3
Акустический шум:	
- диапазон частот, Гц;	50 – 10 000
- уровень звукового давления (относительно $2\cdot 10^{-5}\ \Pi a)$, дБ	170
Механический удар одиночного действия:	
- пиковое ударное ускорение, м/сек 2 (g);	10 000 (1000)
- длительность действия ударного ускорения, мс	0,5 - 2
Механический удар многократного действия:	
- пиковое ударное ускорение, м/сек2 (g);	1500 (150)
- длительность действия ударного ускорения, мс	1 – 5

1нв. № подл.

Лист

№ докум.

Инв. № дубл.

ТЛДР.436610.005 ТУ

Наименование воздействующего фактора, единица измерения	Значение
	воздействующего фактора
Климатические факторы	
Атмосферное пониженное давление, Па (мм рт. ст.)	$0.67 \times 10^3 (5)$
Атмосферное повышенное давление, Па (мм рт. ст.)	2,92x10 ⁵ (2207)
Изменение давления: - диапазон изменения давления, Па (мм рт. ст.) - скорость изменения давления, Па/с	0,67·103 - 2,92·105 (5-2207) 40
Повышенная температура среды при эксплуатации, °C: -для температурного диапазона «S», -для температурного диапазона «Т»	+105 +120
Пониженная температура среды, °С	- 60
Изменение температуры среды, °С -для температурного диапазона «S», -для температурного диапазона «Т»	от – 60 до +105 от – 60 до +120
Повышенная влажность воздуха, %: - относительная влажность при температуре среды +35 °C, %	100
Атмосферные конденсированные осадки (иней и роса): - минимальное значение при эксплуатации, °С	- 20

4.6 Требования надёжности

4.6.1 Гамма-процентная наработка до отказа модулей ($T\gamma$) при γ =95 % в типовом электрическом режиме эксплуатации (Uвх=Uвхном, Pвых= $0,7\cdot P$ макс, Tкорп=50°C) в пределах срока службы Tсл=15 лет должна соответствовать таблице 4.5.

Таблица 4.5 – Показатели надёжности

Показатели надежности, единица измерения	Значение показателя
Средний срок службы (Тсл.с.), лет	15
Средний срок сохраняемости (Тс.с.), лет	15
Гамма-процентная наработка до отказа (Тү), ч	115 000 (γ=95 %)

4.62 Гамма-процентный срок сохраняемости модулей (Тс γ) при γ =99 % при хранении в упаковке изготовителя в условиях отапливаемых хранилищ, хранилищ с кондиционированием воздуха, а также вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте запасного имущества и приборов (ЗИП) во всех местах хранения должен составлять 15 лет.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

4.6.3 При хранении в упаковке изготовителя или вмонтированных в незащищенную аппаратуру, или находящихся в незащищенном комплекте ЗИП в неотапливаемом хранилище, под навесом или на открытой площадке гамма-процентный срок сохраняемости должен соответствовать значениям (с учетом коэффициентов его сокращения), приведенным в таблице 4.6.

Таблица 4.6 - Коэффициенты сокращения гамма-процентного срока сохраняемости

	Значение коэффициента Кс при хранении		
		в незащищенной	
Место хранения	в упаковке	аппаратуре и	
	изготовителя	незащищенном	
		комплекте ЗИП	
Неотапливаемое хранилище	1,5	1,5	
Навес или жалюзийное	1,5	2.	
хранилище	1,3	2	
Открытая площадка	Хранение не	2	
Открытал площадка	допускается	2	

4.7 Требования транспортабельности

4.7.1 Модули до установки на изделие должны обеспечивать их перевозку (при необходимости в транспортной упаковке) различными видами транспорта в соответствии с классами транспортабельности 4, 5, 6, 7 в соответствии с ОТТ 1.1.4-98, а также обеспечивать транспортирование в смонтированном состоянии в составе изделий с заданными для них требованиями по транспортабельности.

4.8 Требования безопасности

- 4.8.1 Конструкция модулей должна быть безопасной при эксплуатации, обслуживании и ремонте, а также исключать вредное воздействие на окружающую среду.
- 4.8.2 В модулях должны быть гальванически развязаны вход и выход, вход и корпус, выход и корпус, выходные каналы между собой. Электрическое сопротивление изоляции токоведущих цепей, не имеющих гальванической связи между собой, а также токоведущих цепей относительно корпуса при воздействии испытательного напряжения постоянного тока величиной 500 В должно быть не менее:
 - 20 МОм при нормальных климатических условиях по ГОСТ 15150-69 (НКУ);

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Электрическая прочность изоляции токоведущих цепей, не имеющих гальванической связи между собой, и токоведущих цепей относительно корпуса должна обеспечивать отсутствие пробоев и поверхностных перекрытий при воздействии постоянного напряжения:

- а) между выводами Вход-Выход:
- 1) в НКУ 3000 В;
- 2) при повышенной влажности, повышенной (пониженной) температуре среды 1500 В.
 - б) между выводами Вход-Корпус:
 - 1) в НКУ 1500 В;
- 2) при повышенной влажности, повышенной (пониженной) температуре среды 500 В.
 - в) между выводами Выход-Корпус:
 - 1) в НКУ 500 В;
- 2) при повышенной влажности, повышенной (пониженной) температуре среды 500 В.
 - г) между выводами Выход-Выход 500 В.
 - 4.8.3 Остальные требования безопасности по ГОСТ РВ 20.39.412-97.
- 4.8.4 В эксплуатационной документации на модули должны быть указаны приемы и способы безопасного выполнения работ по диагностированию, обслуживанию и ремонту.
- 4.8.5 Конструкционные материалы, используемые в модулях, и лакокрасочные покрытия не должны поддерживать горение.
- 4.8.6 Модули при правильной эксплуатации не должны являться источником экологической опасности по ОТТ 1.1.10-99 (Часть 2).

Подпись и да

Инв. № дубл.

ам. инв. 1

одпись и дата

1нв. № подл.

Изм. Лист № докум. Подп. Дата

ТЛДР.436610.005 ТУ

5.1 Общие положения

- 5.1.1 Модули, предъявляемые на испытания и приемку, должны быть полностью укомплектованными в соответствии с требованиями настоящих ТУ и КД.
- 5.1.2 Не допускается применять средства измерений и испытательное оборудование, не прошедшие метрологическую аттестацию (поверку) в установленные сроки.
- 5.1.3 Результаты испытаний считаются положительными, а модули выдержавшими испытания, если модули испытаны в полном объеме и последовательности, установленных в настоящих ТУ для проводимой категории испытаний, и соответствуют всем требованиям.
- 5.1.4 Испытания модулей, если это специально не оговорено в методиках испытаний, проводятся при НКУ:
 - температура воздуха от 15 °C до 35 °C;
 - относительная влажность воздуха 45...75%;
 - атмосферное давление 650...800 мм рт. ст.
- 5.1.5 Для проверки соответствия модулей требованиям КД и настоящих ТУ их подвергают следующим категориям испытаний:
 - квалификационным;
 - приемосдаточным;
 - периодическим

Инв. № дубл.

1нв. № подл.

5.2 Квалификационные испытания и их состав

- 5.2.1 Состав и последовательность испытаний указаны в Таблице 5.1 настоящих ТУ.
- 5.2.2 По результатам испытаний оформляют соответствующие протоколы квалификационных испытаний.

Таблица 5.1 – Состав и последовательность квалификационных испытаний

II	Пункт	
Наименование вида испытаний и последовательность проведения	Технических требований	Методик контроля
Проверка электрического сопротивления изоляции	4.8.2	6.3.1
Проверка электрической прочности изоляции	4.8.2	6.3.2
Проверка габаритных размеров модулей	3.1 Таблица 3.1	6.2.1
Проверка массы модулей	3.1 Таблица 3.1	6.2.2
Проверка требований надежности*	4.6	_
Проверка установившегося отклонения выходного напряжения	4.3.1.1	6.4.1

Изм. Лист № докум. Подп. Дата

ТЛДР.436610.005 ТУ

BBM editor o roku (11)		
Проверка температурной нестабильности выходного напряжения (H _T)	4.3.1.4	6.4.3
Проверка временной нестабильности выходного напряжения модулей (H _t)	4.3.1.5	6.4.4
Проверка суммарная нестабильность выходного напряжения (H_{Σ})	4.3.1.2	6.4.5
Проверка переходного отклонения выходного напряжен модулей (δU _{ПЕР}) при воздействиипереходного отклонения входного напряжения	ния 4.3.1.6	6.4.6
Проверка пульсации выходного напряжения (от пика до пика) $U_{\Pi Y J h C}$	4.3.1.7	6.4.7
Проверка срабатывания защиты от перегрузки по выходному току и от короткого замыкания	4.3.1.8	6.4.8
Проверка защиты от превышениявыходного напряжения	4.3.1.9	6.4.9
Проверка полной потребляемой мощности в установившемся режиме	4.3.1.10	6.4.10
Проверка абсолютного значения выходного напряжения при работе на холостом ходу не должно превышать U _{вых.ном} ,	4.3.1.11	6.4.11
Проверка значения тока, потребляемого от сети в момент включения ($I_{\rm BKJ}$),	4.3.1.12	6.4.12
Проверка дистанционного выключения	4.3.1.13	6.4.13
Проверка времени установления выходного напряжения первого (основного) канала	4.3.1.14	6.4.14
Проверка защиты от перегрева с автоматическим возвратом в рабочий режим после его устранения	4.3.1.15	6.4.15
Проверка возможности регулировки выходногонапряжения в диапазоне	4.3.1.16	6.4.16
Диапазопе Проверка стойкости к воздействию синусоидальной вибрации	4.5.1 Таблица 4.4	6.5.1
Проверка стойкости к воздействию акустического шума	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию механического удара одиночного действия	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию механического удара многократного действия	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию атмосферного пониженного давления	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию атмосферного повышенного давления	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию изменения атмосферного давления	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию повышенной температура среды	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию пониженной температура среды	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию циклического изменения температуры среды	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию повышенной влажности воздуха	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию атмосферных	4.5.1	6.5

ТЛДР.436610.005 ТУ

4.3.1.3

6.4.2

Лист

15

Проверка нестабильности выходного напряжения при плавном изменении входного напряжения (H_U) и

выходного тока (H_I)

Инв. № дубл.

Взам. инв. №

Подпись и дата

Инв. № подл.

Изм.

*Лис*т

№ докум.

Подп.

Дата

Взам. инв.

- 5.2.3 Испытание по определению критических частот конструкции в составе квалификационных испытаний отдельно не проводят, а совмещают с испытаниями на вибропрочность.
- 5.2.4 Испытания на виброустойчивость и ударную устойчивость отдельно не проводят, а совмещают с испытаниями на вибропрочность и ударную прочность соответственно.
- 5.2.5 Стойкость к воздействию повышенной и пониженной температуры среды при транспортировании и хранении, а также атмосферного пониженного давления при авиатранспортировании в составе квалификационных испытаний не контролируют.

Стойкость к воздействию этих факторов подтверждают результатами испытаний на стойкость к воздействию повышенной и пониженной температуры корпуса модуля при эксплуатации, а также пониженного атмосферного давления при эксплуатации.

5.2.6 Комплектование выборок, план контроля, объем выборок должны соответствовать ГОСТ Р 53711-2009.

5.3 Приёмо-сдаточные испытания

- 5.3.1 Модули на приёмо-сдаточные испытания предъявляют поштучно или партиями объёмом не более 50 шт. и проверяют по методу сплошного контроля.
- 5.3.2 Состав испытаний, деление состава испытаний на подгруппы, последовательность испытаний в пределах каждой подгруппы приведены в таблице 5.2.

Таблица 5.2 – Состав и последовательность приемо-сдаточных испытаний

	IKT	
Технических требований	Методик контроля	
4.2.1	6.2.1	
4.2.1	6.2.1	
4.8.2	6.3.1	
4.3.1.1	6.4.1	
4.3.1.7	6.4.7	
4.3.1.13	6.4.13	
4.3.1.8	6.4.8	
4.3.1.11	6.4.11	
	4.2.1 4.2.1 4.8.2 4.3.1.1 4.3.1.7 4.3.1.8	

5.4.1 Состав испытаний, деление состава испытаний на подгруппы, последовательность испытаний в пределах каждой подгруппы должны соответствовать таблице 5.3.

Таблица 5.3 – Состав и последовательность периодических испытаний

т.	Пункт	
Наименование вида испытаний и последовательность проведения	Технических требований	Методик контроля
Проверка стойкости к воздействию синусоидальной вибрации	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию механического удара одиночного действия	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию механического удара многократного действия	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию атмосферного пониженного давления	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию атмосферного повышенного давления	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию изменения атмосферного давления	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию повышенной влажности воздуха	4.5.1 Таблица 4.4	6.5
Проверка стойкости к воздействию атмосферных конденсированных осадков	4.5.1 Таблица 4.4	6.5

- 5.4.2 Периодические испытания проводят для периодической проверки соответствия модулей требованиям ТУ и проверки стабильности технологического процесса производства.
 - 5.4.3 Испытания проводят на модулях, прошедших приёмо-сдаточные испытания.
 - 5.4.4 Периодичность проведения периодических испытаний один раз в год.
- 5.4.5 Модули, подвергнутые периодическим испытаниям, допускается поставлять потребителям, если параметры соответствуют нормам при поставке, а их внешний вид образцам внешнего вида.

	lacksquare
Взам. инв. №	
Подпись и дата	
Инв. № подл.	

Инв. № дубл.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

6 Методы контроля

6.1 Общие положения

6.1.1 Номинальные значения выходного тока модулей электропитания вычисляются по формуле:

IBЫХ НОМ = P ВЫХ НОМ / U ВЫХ НОМ:

Івых.ном – номинальное значение выходного тока, А,

U_{ВЫХ.НОМ} – номинальное значение выходного напряжения, В,

Рвых.ном – номинальная выходная мощность, Вт.

- 6.1.2 Измерения электрических параметров модулей электропитания проводят в соответствии со схемами, приведенными в приложении 1 средствами измерений, приведенными в приложении 2.
- 6.1.3 При измерениях модули должны быть закреплены с прилеганием металлического основания к радиатору с применением термопасты. Температура корпуса модуля не должна превышать температуру окружающего воздуха более, чем на 10°С. Под температурой корпуса принимается температура в середине длинной стороны на расстоянии 1-2 мм от радиатора при ориентации модуля слева входное питание, справа выход для подключения нагрузки.
- 6.1.4 Контроль электрических параметров до начала и после проведения испытаний проводят при нормальных климатических условиях, если другие условия не указаны при изложении конкретных методов контроля.
- 6.1.5 Входное и выходное напряжение измеряют непосредственно на выводах модуля. В измерительные цепи средств измерений, за исключением особо оговоренных случаев, не должны входить участки цепи нагрузки модуля.
- 6.1.6 Значения параметров, измеренных после предыдущего испытания, допускается принимать за исходные перед проведением последующего измерения при непрерывном проведении испытаний.
- 6.1.7 Для регулируемых модулей измерения проводят при номинальном выходном напряжении.
- 6.1.8 Запрещается подключение и отключение внешних цепей на включенных модулях.
- 6.1.9 Все работы с модулями должны выполняться в строгом соответствии с действующими документами по правилам и мерам безопасности.

Инв. № подл.	
Узм. Лист № докум. Подп. Д	Дата

Инв. № дубл.

Подпись и дата

ТЛДР.436610.005 ТУ

Лист

0

- 6.1.11 Все приборы, находящиеся на рабочем месте, должны быть поверены и подготовлены к работе, согласно инструкциям, на эти приборы.
- 6.1.12 Не допускается прикасаться к контактам разъемов и элементам модулей одеждой, руками или приспособлениями без антистатического браслета. Хранение и перемещение модулей должно осуществляться только в технологической таре.

6.2 Контроль соответствия требованиям к конструкции.

- 6.2.1 Внешним осмотром проверяют качество и целостность покрытий, целостность конструкции, мест крепления, а также отсутствие вмятин, трещин, следов коррозии на внешних поверхностях. Габаритные, установочные и присоединительные размеры модулей контролируют с помощью штангенциркуля. Модули считаются выдержавшими испытания, по требованиям п. 3.1, если внешний вид, габаритные, установочные и присоединительные размеры модулей соответствуют указанным в таблице 3.1 настоящих ТУ.
- 6.2.2 Проверку массы модулей контролируют взвешиванием на весах с допустимой погрешностью 5 %.

Модули считают выдержавшими испытание по требованиям п. 3.1, если масса не превышает значений, указанных в таблице 3.1 настоящих ТУ.

6.3 Контроль соответствия требованиям безопасности

6.3.1 Проверку электрического сопротивления изоляции модулей производят в соответствии с требованиями ГОСТ 12997 при воздействии испытательного напряжения постоянного тока величиной 500 В.

Для модулей электропитания прибор подключают между точками «1» и «2», «1» и «3, «2» и «3», где:

- точка «1» соединенные между собой выводы «+ВХ», «-ВХ» и «ВКЛ/ВЫКЛ»;
- точка «2» вывод «КОРП», соединенный с основанием или фланцем корпуса;
- точка «3» соединенные между собой «+ВЫХ» и «—ВЫХ», «РЕГ», «ПАРАЛ», «— OC», «+OC»;

Показания отсчитывают через 1 минуту после подачи измерительного напряжения или меньшее время, если сопротивление изоляции остается неизменным.

Подпись и д
Инв. № подл.

Инв. № дубл.

ИНВ.

Взам.

Модули считают выдержавшими испытания по требованиям 4.8.2, если сопротивление изоляции составляет:

- при НКУ не менее 20 МОм;
- при повышенной (пониженной) рабочей температуре не менее 5 МОм;
- 6.3.2 Проверку электрической прочности изоляции модулей проводят в соответствии с требованиями ГОСТ 12997 с помощью универсальной пробойной установки УПУ-10М или аналогичной в течение 1 минуты при воздействии испытательного напряжения, параметры которого указаны в 4.8.2.

Для модулей электропитания прибор подключают между точками «1» и «2», «1» и «3, «2» и «3», где:

- точка «1» соединенные между собой выводы «+ВХ», «–ВХ» и «ВКЛ/ВЫКЛ»;
- точка «2» вывод «КОРП», соединенный с основанием или фланцем корпуса;
- точка «3» соединенные между собой «+ВЫХ» и «-ВЫХ», «РЕГ», «ПАРАЛ», «- OC», «+OC»;

Модули считают выдержавшими испытания по требованиям 4.8.2, если во время проверки не было отмечено пробоя или поверхностного перекрытия изоляции.

6.4 Контроль соответствия электрических параметров и режимов эксплуатации.

64.1 Проверку установившегося отклонения выходного напряжения $\Delta U_{\rm YCT}$, %, производят при НКУ, номинальном входном напряжении и 50% номинального выходного тока модулей по формуле:

$$\Delta U_{\text{YCT}} = (U_{\text{BMX}} - U_{\text{H}})/U_{\text{H}} \times 100,$$

где U_H – номинальное выходное напряжение, B;

U_{ВЫХ} – выходное напряжение при номинальном выходном токе, В.

Значение отклонения, вычисленное по формуле, указывают с учетом знака. Модули считают выдержавшими испытания по требованиям п. 4.3.1.1, если установившееся отклонение выходного напряжения модулей электропитания при НКУ составляет не более $\pm 2\%$.

642 Нестабильность выходного напряжения при плавном изменении входного напряжения H_U , %, проверяют при НКУ, номинальном выходном токе модулей.

Устанавливают номинальное значение входного напряжения, а затем плавно увеличивают его до заданного максимального установившегося значения и уменьшают до

Лист

№ докум.

Подп.

Дата

Инв. № дубл.

минимального установившегося значения, одновременно контролируют выходное напряжение. Нестабильность рассчитывается по формуле:

$$H_U = (U_{MAKC(MИН)} - U) / U \times 100,$$

где $U_{MAKC(MИH)}$ — выходные напряжения, измеренные при отклонениях входного напряжения, B;

U – выходное напряжение при номинальном входном напряжении, В.

Нестабильность рассчитывается с учетом знаков.

Нестабильность выходного напряжения при плавном изменении выходного тока $H_{\rm I}$, %, проверяют в НКУ при номинальном входном напряжении.

Устанавливают выходной ток канала, равным $0.5 \times (I_{HMAKC} + I_{HMUH})$, а затем плавно его уменьшают до наименьшего значения и увеличивают до наибольшего (I_{HOM}), одновременно контролируя выходное напряжения канала. Нестабильность рассчитывается по формуле:

$$H_I = (U_{MAKC(MИH)} - U)/U \times 100,$$

где $U_{MAKC(MUH)}$ — выходные напряжения, измеренные при отклонениях выходного тока, B:

U – выходное напряжение при выходном токе, равном $0.5 \times (I_{HMAKC} + I_{HMUH})$, B.

Нестабильность рассчитывается с учетом знаков.

Модули считают выдержавшим испытание по требованиям 4.3.1.3, если значения нестабильности выходного напряжения H_I и H_U не превышают $\pm 2\%$ и $\pm 2\%$ соответственно.

6.4.3 Температурную нестабильность выходного напряжения H_T, %, проверяют при номинальном входном напряжении и номинальном выходном токе модулей.

Измеряют выходные напряжения при НКУ, а затем увеличивают температуру среды до заданной величины повышенной рабочей температуры корпуса модуля и уменьшают до величины пониженной рабочей температуры корпуса модуля.

Нестабильность рассчитывается по формуле:

$$H_T = (U_{MAKC(MUH)} - U) / U \times 100,$$

где $U_{\text{МАКС(МИН)}}$ — выходные напряжения, измеренные при отклонениях рабочей температуры среды, B;

U – выходное напряжение при НКУ, В.

Нестабильность рассчитывается с учетом знаков.

Допускается совмещение проверки температурной нестабильности выходного напряжения с испытаниями на воздействие повышенной и пониженной температуры корпуса модуля.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

ТЛДР.436610.005 ТУ

Модули считают выдержавшими испытание по требованиям п. 4.3.1.4, если нестабильность выходного напряжения не превышает ± 3 %.

6.4.4 Временную нестабильность выходного напряжения H_t , %, проверяют при НКУ, номинальном входном напряжении и номинальном выходном токе модулей.

Первое измерение выходного напряжения производят через 30 минут после включения модуля, остальные измерения — через каждые 2 часа в течение 8 часов непрерывной работы.

Нестабильность рассчитывается по формуле:

$$H_t = (U_{MAKC(MИH)} - U)/U \times 100,$$

где $U_{MAKC(MUH)}$ – выходные напряжения, измеренные в течение 8 часов непрерывной работы, B.

U – выходное напряжение, измеренное до проведения испытаний, В.

Нестабильность рассчитывается с учетом знаков.

Модули считают выдержавшими испытание по требованиям п. 4.3.1.5, если нестабильность выходного напряжения не превышает $\pm 0,5\%$.

6.4.5 Проверку суммарной нестабильности выходного напряжения модулей электропитания H_{Σ} , %, осуществляют суммированием отдельно положительных и отрицательных частных нестабильностей по формуле:

$$H_{\Sigma} = H_U + H_I + H_T + H_t,$$

где H_U- нестабильность выходного напряжения при плавном изменении входного напряжения, %;

 $H_{\rm I}-$ нестабильность выходного напряжения при плавном изменении выходного тока, %;

 $H_{T}-$ температурная нестабильность, %;

H_t – временная нестабильность, %.

Модули считают выдержавшим испытание по требованиям 4.3.1.2, если суммарная нестабильность выходного напряжения не превышает \pm 6%.

6.4.6 Проверка переходного отклонения выходного напряжения модулей бUпер, %, состоит в регистрации изменения выходного напряжения после воздействия заданного скачкообразного изменения выходного тока длительностью фронта не менее 0,5 мс и вычисления переходного отклонения по формуле:

$$\delta$$
Uпер = (Uмакс.(мин.) – U)/ U×100

где Uмакс.(мин.) — максимальное (минимальное) значение выходного напряжения вовремя воздействия изменения выходного тока, B;

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

ТЛДР.436610.005 ТУ

Проверку переходного отклонения выходного напряжения при скачкообразном изменении выходного тока производят в НКУ при номинальном входном напряжении.

Устанавливают тумблеры S1, S4, (S5) в положение «ВКЛ», S6, (S7) – в положение «II». Резисторами R5, (R6) контролируя по прибору P6 (P7), устанавливают выходной ток равным 0,3•Iн. Устанавливают тумблер S6 (S7) в положение «I» и с помощью резисторов R1, R2 (R3, R4) устанавливают номинальный выходной ток.

Переключая тумблер S6, (S7) из положения «I» в положение «II» и обратно, фиксируют осциллограмму выходного напряжения на регистраторе P8. Определяют значение переходного отклонения выходного напряжения.

Модули считают выдержавшими испытания по требованиям 4.3.1.6, если переходное отклонение выходного напряжения не превышает значений, указанных в требованиях 4.3.1.6.

6.4.7 Пульсации выходного напряжения модулей электропитания проверяют при НКУ при минимальном значении входного напряжения и номинальном выходном токе модулей.

При измерении пульсации выходного напряжения, необходимо пользоваться приспособлением, изображенном на рисунке 6.1.

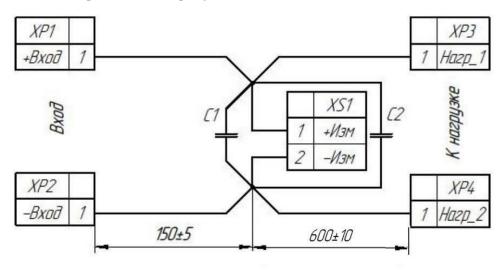


Рисунок 6.1 – Приспособление для измерения пульсаций выходного напряжения

- 1) С1 К73-17, 100 нФ, 100 В, 5% Пленочный конденсатор, (1 шт.)
- 2) С2 Неполярный электролитический конденсатор 33 мкФ 100 В, (1 шт.)
- 3) XP1..XP4 разъем ШП4-2, штепсель, (4 шт.)
- 4) XS1 разъем СР50-155ФМВ, гнездо, (1 шт.).

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл

⋛

Взам.

Подпись и дата

лнв. № подл

Модули считают выдержавшими испытания по требованиям 4.3.1.7, если пульсация выходного напряжения (от пика до пика) не превышает значений $\pm 2\%$ от номинального **U**вых.

6.4.8 Проверка защиты модулей электропитания от перегрузки по выходному току и короткого замыкания.

Проверку защиты от перегрузки по выходному току и короткого замыкания производят при НКУ, минимальном входном напряжении и номинальном выходном токе модулей.

Замыкают выходные выводы каналов на время 5±2 секунды. После размыкания выходных выводов проверяют значение выходного напряжения.

Для проверки защиты от перегрузки по выходному току, плавно увеличивая ток нагрузки, контролируют начало срабатывания защиты от перегрузки по выходному току (снижение выходного напряжения проверяемого канала, превышающее номинальное значение с учетом суммарной нестабильности).

Модули считают выдержавшими испытание, если схемы защиты срабатывают, работоспособность модуля после снятия короткого замыкания восстанавливается, а ток короткого замыкания и ток срабатывания защиты от перегрузки не превышают значений, указанных в п. 4.3.1.8 настоящих ТУ.

6.4.9 Проверку защиты от превышения выходного напряжения производят при НКУ, номинальном входном напряжении и минимальном выходном токе одноканальных модулей и всех каналов многоканальных модулей.

На выход модуля подают напряжение, превышающее номинальное в 1,35 раза от дополнительного источника питания. При этом контролируют ток потребления, который должен уменьшиться до 200мА и менее. Затем отключают от выхода модуля напряжение от дополнительного источника питания. Работоспособность модуля после снятия перегрузки должна восстанавливается.

Модули считают выдержавшими испытание по требованиям 4.3.1.9, если схема зашиты срабатывает, работоспособность модуля после снятия перегрузки восстанавливается, а напряжение срабатывания не более 1,3×U_{вых.ном}.

6.4.10 Проверку полной потребляемой мощности модулей электропитания производят при номинальном входном напряжении и номинальном выходном токе модулей. Значение полной потребляемой мощности Р, Вт, определяют по формуле:

$$P=U\times I$$

где U – значение входного напряжения, B;

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Модули считают выдержавшими испытания по требованиям 4.3.1.10, если значение полной потребляемой мощности в установившемся режиме не превышает величины

$$P = 1.25 \times P_{BbIX}$$

где: Рвых – выходная мощность.

6.4.11 Проверку работы модулей электропитания на холостом ходу производят при максимальном входном напряжении.

Стенд для измерений в соответствии с приложением 1 к настоящим ТУ, средства измерений в соответствии с приложением 2 к настоящим ТУ.

Модуль устанавливают в режим холостого хода и измеряют величину выходного напряжения каждого канала (для многоканальных модулей).

Модули считают выдержавшими испытания по требованиям 4.3.1.11, если установившееся отклонение выходного напряжения на холостом ходу не превышает допустимого настоящими ТУ с учетом нестабильностей.

6.4.12 Проверку тока, потребляемого от сети в момент включения модулей электропитания, производят при номинальном входном напряжении, максимальной емкости нагрузки и выходном токе 0,7×I_{ВЫХ.НОМ}. Проверку производят при помощи измерительного сопротивления, включенного последовательно в цепь питания модуля R_{ИЗМ}. В качестве R_{ИЗМ} использовать шунт 75ШИП-10А-0,5 для модулей номинальной мощностью 100 Вт и выше или резистор 0,1 Ом 5 Вт для модулей номинальной мощностью менее 100 Вт. Изменение напряжения, фиксируют на измерительных выводах шунта, осциллографом в режиме одиночного запуска в момент включения модуля, путем подачи управляющего сигнала на вывод «ВКЛ/ВЫКЛ».

Полученное и зафиксированное изменение напряжения на измерительных выводах шунта переводят в ток методом пересчета исходя из того, что для данного шунта падение напряжения 75 мВ соответствует протеканию постоянного тока силой 10 А.

Модули считают выдержавшими испытания по требованиям 4.3.1.12, если значение тока, потребляемого от сети в момент включения, не превышает значений таблицы 4.2.

6.4.13 Проверку дистанционного выключения модулей электропитания производят при номинальном входном напряжении и номинальном выходном токе модулей.

Модули считают выдержавшими испытания по требованиям 4.3.1.13, если при соединении вывода «ВКЛ/ВЫКЛ» с выводом «—ВХ» происходит выключение, а при размыкании — включение модулей.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

ТЛДР.436610.005 ТУ

Время установления выходного напряжения определяется как интервал времени между моментом подачи управляющего сигнала на вывод «ВКЛ/ВЫКЛ» и моментом, когда выходное напряжение достигает номинального значения с учетом суммарной нестабильности. Измеряется осциллографом в режиме одиночного запуска. Подача управляющего сигнала заключается в установлении электрического соединения выводов «ВКЛ/ВЫКЛ» и «–ВХ», после чего модуль должен выключиться. Обратное действие должно привести к дистанционному включению модуля.

Модули считают выдержавшими испытания по требованиям 4.3.1.14, если время установления выходного напряжения первого канала модулей электропитания с момента подачи управляющего сигнала на вывод «ВКЛ/ВЫКЛ» не превышает 100 мс.

64.15 Проверку срабатывания защиты от перегрева модулей электропитания производят при номинальном входном напряжении и номинальном выходном токе модулей.

Модули считают выдержавшими испытания по требованиям 4.3.1.15, если при нагреве корпуса модуля до температуры плюс 120...плюс 125 °C для диапазона «Т», до температуры плюс 105...плюс 110 °C для диапазона «S» происходит выключение модуля с последующим возвращением рабочего режима при охлаждении корпуса модуля до температуры рабочей области.

Допускается производить указанное испытание совместно с проверкой работоспособности модуля при повышенной рабочей температуре корпуса модуля.

64.16 Проверка пределов ручного регулирования выходного напряжения модулей электропитания.

Пределы ручного регулирования выходного напряжения проверяют при номинальном выходном токе, минимальном и максимальном установившихся значениях выходного напряжения путем вращения ротора резистора, подключенного между выводом «РЕГ» и «—ВЫХ» (для увеличения) или «РЕГ» и «+ВЫХ» (для уменьшения) выходного напряжения. Диапазон регулирования ΔU_P , %, определяется с учетом знака по формуле:

$$\Delta U_P = (U_{MAKC(MVH)} - U_H) / U_H \times 100,$$

где $U_{\text{MAKC}}-$ верхний предел регулирования выходного напряжения, B;

 $U_{\text{MИН}}.-$ нижний предел регулирования выходного напряжения, B;

 $U_{H}-$ номинальное выходное напряжение, B.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

ИНВ.

Подпись и дата

чв. № подл.

ТЛДР.436610.005 ТУ

6.5 Контроль соответствия требований по стойкости к внешним воздействующим факторам.

6.5.1 Испытание модулей на устойчивость к воздействию синусоидальной вибрации.

Модули испытывают во включенном состоянии при номинальном входном напряжении и номинальном выходном токе модулей в диапазоне частот от 10 до 500 Гц с

виброускорением 5 g, частота перехода 50 Гц по каждому из трёх перпендикулярных направлений осей.

До и после испытания проводят внешний осмотр. В ходе испытания контролируют выходное напряжение и его пульсацию.

Длительность воздействия синусоидальной вибрации в каждом поддиапазоне частот не менее двух минут.

Модули считают выдержавшими испытание, если вовремя и после испытания внешний вид соответствует установленным требованиям, установившееся отклонение выходного напряжения не превышает \pm 2%, а пульсации выходного напряжения не превышают 2 %.

6.5.2 Испытание модулей на виброустойчивость

Модули испытывают во включенном состоянии при номинальном входном напряжении и номинальном выходном токе модулей с виброускорением 15 g и длительностью воздействия 200 мс по каждому из трёх перпендикулярных направлений осей. В ходе испытания контролируют выходное напряжение и его пульсацию.

Модули считают выдержавшими испытание, если вовремя и после испытания внешний вид соответствует установленным требованиям, установившееся отклонение выходного напряжения не превышает \pm 2%, а пульсации выходного напряжения не превышают 2 %.

6.5.3 Испытание модулей на вибропрочность

№ докум.

Подп.

Дата

Модули испытывают в выключенном состоянии методом виброудара одиночного действия ускорением 100 g с длительностью воздействия 20 мс, по каждому из трёх перпендикулярных направлений осей.

Модули считают выдержавшими испытание, если после испытания внешний вид соответствует установленным требованиям, установившееся отклонение выходного напряжения не превышает \pm 1,5%, а пульсации выходного напряжения не превышают 2 %.

Подпись и д	
Инв. Nº подл.	

Инв. № дубл.

ИНВ.

Взам.

6.5.4 Испытание модулей на воздействие одиночных ударов проводят

в выключенном состоянии. Пиковое ударное ускорение –150 g, длительность действия – 0,3...1 мс. Модули подвергают воздействию по три удара поочередно в каждом направлении по трем взаимно-перпендикулярным осям (шесть направлений). Форма импульса ударного ускорения должна быть близкой к полусинусоиде.

Модули считают выдержавшими испытание, если после испытания внешний вид соответствует установленным требованиям, установившееся отклонение выходного напряжения не превышает $\pm 2\%$, а пульсации выходного напряжения не превышают 2%.

6.5.5 Испытание модулей на воздействие ударов многократного действия проводят во включенном состоянии при номинальном входном напряжении и номинальном выходном токе модулей. Пиковое ударное ускорение –35 g, длительность действия – 5...100 мс по каждому из 3 взаимоперпендикулярных направлений осей. Общее число ударов – 10000 шт. Форма импульса ударного ускорения должна быть близкой к полусинусоиде.

Модули считают выдержавшими испытание, если вовремя и после испытания внешний вид соответствует установленным требованиям, установившееся отклонение выходного напряжения не превышает \pm 2%, а пульсации выходного напряжения не превышают 2 %.

6.5.6 Испытания на воздействие повышенной предельной температуры корпуса модуля.

До испытаний проводят проверку внешнего вида, электрического сопротивления изоляции, электрической прочности изоляции, установившегося отклонения выходного напряжения, пульсации выходного напряжения.

Модули помещают в камеру тепла, предварительно прогретую до температуры плюс 125±3 °C для диапазона «Т», плюс 110±3 °C для диапазона «S» и выдерживают в течении двух часов.

После проведения испытания контролируют следующие параметры:

- Контроль электрического сопротивления изоляции,
- Контроль электрической прочности изоляции,
- Контроль установившегося отклонения выходного,
- Контроль пульсаций выходного напряжения.

Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры соответствуют требованиям настоящих ТУ.

6.5.7 Испытания на воздействие повышенной рабочей температуры корпуса модуля

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

До испытаний проводят проверку внешнего вида, электрического сопротивления изоляции, электрической прочности изоляции, установившегося отклонения выходного напряжения, пульсаций выходного напряжения.

Модули устанавливают на радиатор с толщиной основания не менее 10 мм (информация по подбору радиатора приведена в разделе 9 настоящих ТУ) и помещают в камеру. Модули включают при номинальном входном напряжении и номинальном выходном токе.

Температуру в камере регулируют таким образом, чтобы температура на корпусе модуля составила 120±3 °C для диапазона «Т», плюс 105±3 °C для диапазона «S». После установления теплового равновесия, модули выдерживают во включенном состоянии в течение 2 часов, контролируя величину выходного напряжения. Затем, не извлекая изделия из камеры, проводят проверку величины выходного напряжения, пульсаций выходного напряжения.

Модули извлекают из камеры, выдерживают при НКУ не менее 2 часов, проводят внешний осмотр и проводят проверку электрического сопротивления и электрической прочности изоляции.

Модули считаются выдержавшими испытание, если вовремя и после испытания внешний вид, установившееся отклонение выходного напряжения, пульсации выходного напряжения соответствуют требованиям настоящих ТУ и после проведения испытаний электрическое сопротивление изоляции и электрическая прочность изоляции соответствуют требованиям настоящих ТУ.

6.5.8 Испытание на воздействие пониженной рабочей температуры корпуса модуля До испытаний проводят проверку внешнего вида, электрического сопротивления изоляции, установившегося отклонения выходного напряжения, пульсации выходного напряжения.

Модули помещают в камеру, после чего в камере устанавливают пониженную температуру минус $60\pm3\,^{\circ}$ С для диапазона «Т», минус $40\pm3\,^{\circ}$ С для диапазона «S». Допускается помещать изделия в камеру с заранее установленной температурой. После достижения теплового равновесия модули выдерживают во включенном состоянии в течение 2 часов при номинальном входном напряжении и номинальном выходном токе и проводят проверку установившегося отклонения выходного напряжения, пульсации выходного напряжения.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

ИНВ.

Взам.

Подпись и дата

ТЛДР.436610.005 ТУ

Модули извлекают из камеры, выдерживают при НКУ не менее 2 часов, проводят внешний осмотр и проводят проверку электрического сопротивления и электрической прочности изоляции.

Модули считаются выдержавшими испытание, если внешний вид и указанные электрические параметры соответствуют требованиям настоящих ТУ.

6.5.9 Испытание на воздействие пониженной предельной температуры корпуса модуля

Проводят по методике п.6.5.8 без подключения к сети питания и температурой в камере минус 60 ± 3 °C для диапазона «Т», минус 40 ± 3 °C для диапазона «S», затем модули извлекают из камеры, выдерживают при НКУ не менее 2 часов, после чего производят:

- Контроль электрического сопротивления изоляции,
- Контроль электрической прочности изоляции,
- Контроль установившегося отклонения выходного,
- Контроль пульсаций выходного напряжения.

Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры соответствуют требованиям настоящих ТУ.

6.5.10 Испытание на воздействие изменения температуры среды

Испытание модулей на воздействие изменения температуры среды проводят методом термоциклирования.

До испытаний проводят проверку внешнего вида, электрического сопротивления изоляции, установившегося отклонения выходного напряжения, пульсации выходного напряжения.

Модули помещают в камеру, в которой заранее установлена пониженная температура минус 60 ± 3 °C для температурного диапазона «Т», минус 40 ± 3 °C для диапазона «S» и выдерживают в выключенном состоянии в течение 1 часа. Затем модули переносят в камеру, в которой заранее установлена температура плюс 105 ± 3 °C для диапазона «S», плюс 120 ± 3 °C для диапазона «Т» и выдерживают в выключенном состоянии в течение 1 часа. Общее количество циклов — три. Время переноса — минимальное, но не более 5 минут. После проведения испытания проводят следующие проверки:

- Контроль электрического сопротивления изоляции,
- Контроль электрической прочности изоляции,
- Контроль установившегося отклонения выходного,
- Контроль пульсаций выходного напряжения.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

Взам.

Подпись и дата

нв. № подл.

ТЛДР.436610.005 ТУ

Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры соответствуют требованиям настоящих ТУ.

6.5.11 Испытание модулей на воздействие атмосферного пониженного давления.

Модули помещают в камеру, давление в камере понижают до 0,67×103 Па (5 мм рт.ст.) и выдерживают в течение 1 часа. Модули включают при номинальном входном напряжении и номинальном выходном токе модулей, выдерживают во включенном состоянии 30 минут и измеряют установившееся отклонение выходного напряжения, пульсации выходного напряжения. Модули выключают. Давление в камере повышают до нормального.

Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры (выходное напряжение и его пульсации) соответствуют требованиям настоящих ТУ.

6.5.12 Испытание модулей на воздействие атмосферного повышенного давления.

Модули помещают в камеру, давление в камере повышают до 2,92×105 Па (2207 мм рт.ст.) и выдерживают в течение 4 часов. Модули включают при номинальном входном напряжении и номинальном выходном токе модулей, выдерживают во включенном состоянии 1 час и измеряют установившееся отклонение выходного напряжения, пульсации выходного напряжения. Модули выключают. Давление в камере понижают до нормального.

Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры (выходное напряжение и его пульсации) соответствуют требованиям настоящих ТУ.

6.5.13 Испытание модулей на воздействие изменения атмосферного давления.

Модули помещают в камеру, давление в камере понижают до 5 мм рт.ст. со скоростью 500 мм рт.ст./с и выдерживают в течение 1 часа, затем давление в камере повышают до 765 мм рт.ст со скоростью 500 мм рт.ст./с и выдерживают в течение 1 часа. Проводят три указанных цикла, после чего давление в камере доводят до нормального и извлекают модули из камеры.

Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры (выходное напряжение и его пульсации) соответствуют требованиям настоящих ТУ.

6.5.14 Испытание модулей на воздействие повышенной влажности.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

⋛

ИНВ.

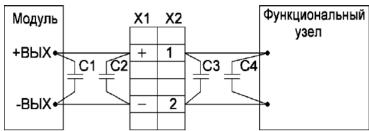
Взам.

Подпись и дата

′нв. № подл.

До испытаний проводят проверку внешнего вида, электрического сопротивления изоляции, установившегося отклонения выходного напряжения, пульсации выходного напряжения.

Модули помещают в камеру влаги и выдерживают в течение 56 суток при относительной влажности воздуха 100 % и температуре среды 35 °C без электрической нагрузки. Модули извлекают из камеры, выдерживают в НКУ не менее двух часов, проводят внешний осмотр, проверку электрического сопротивления изоляции, установившегося отклонения выходного напряжения, пульсации выходного напряжения.


Модули считают выдержавшими испытания, если их внешний вид соответствует КД, а электрические параметры (сопротивление изоляции, выходное напряжение и его пульсации) соответствуют требованиям настоящих ТУ.

1	Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата		Τ,
1нв. Л						ТЛДР.436610.005 ТУ	- 77
Инв. № подл.				<u> </u>			<i>J</i>
Подпись и дата							
Взам. инв. №							
Инв. № дубл.							
Подпись и дата							

- 7.1 Эксплуатация модулей должна осуществляться с учётом требований по защите от статического электричества в соответствии с ОСТ 11 073.062.
- 7.2 Установку модулей и способ их крепления в питаемой аппаратуре необходимо производить с учётом механических нагрузок, в которых работает аппаратура и отвода тепла от модулей.
 - 7.2.1 Крепление модулей к плате и теплоотводу осуществлять винтами.
- 7.2.2 Необходимо учитывать особенности конструкции модулей при их креплении в аппаратуре. В основе конструкции лежит печатная плата с элементами для поверхностного монтажа. В связи с этим недопустимо приложение механических усилий к компаунду модуля при креплении модуля хомутом, планкой, радиатором и т.п.
- 7.2.3 В условиях повышенных механических воздействий модули рекомендуется клеить к печатной плате или элементам конструкции клеями-демпферами (например, клейгерметик кремнийорганический «Эласил 11-01» ТУ6-02-857-74). Допускается наносить клей-демпфер на дно корпуса со стороны выводов.
- 7.2.4 Допускается установка модулей на теплоотводы любой конструкции, обеспечивающей заданную температуру корпуса модулей, в том числе использование принудительного обдува.
- 7.2.5 При измерениях, испытаниях и эксплуатации модулей необходимо тщательно контролировать температуру их корпуса или теплоотводящей поверхности на соответствие значениям, указанным в настоящих ТУ. При контроле температуры необходимо применять теплопроводящую пасту, например, КПТ-8 для уменьшения теплового сопротивления между датчиком и теплоотводящей поверхностью корпуса.
- 73 Запрещается включать модули во время проверок с помощью контактных устройств, допускающих кратковременные перерывы контактов (дребезг).
- 7.4 Запрещается производить монтаж и подключение модулей к электрическим цепям, находящимся под напряжением.
- 75 Пайку выводов модулей рекомендуется производить электропаяльником мощностью не менее 80 Вт при температуре не более 260 °C в течение не более 5 с на один вывод. Допускается пайка выводов не более трёх раз на расстоянии не менее 0,5 мм от корпуса. Изгиб выводов при пайке не допускается. Пайку выводов модуля рекомендуется осуществлять к печатным проводникам платы.
 - 7.6 Неиспользуемые выводы допускается выкусывать.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

C1...C4 — конденсатор типа K10-47-0,47...1,5 мк Φ .

Рисунок 7.2 – Схема подключения нагрузки к модулю при наличии протяжённых линий связи

7.8 Необходимо обращать внимание на правильность разводки печатных плат и подключения объёмных проводников в соответствии с рисунками 7.3, 7.4.

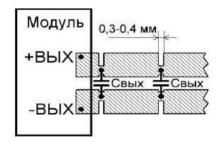


Рисунок 7.3 – Пример правильной разводки проводников печатной платы

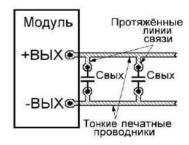


Рисунок 7.4 – Пример неправильной разводки проводников печатной платы

L					
I					
I					
I	Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

ИНВ.

Взам.

Подпись и дата

1нв. Nº подл.

ТЛДР.436610.005 ТУ

При правильном параллельном подключении модулей электропитания на номинальной суммарной выходной мощности различие текущих значений выходных токов модулей не превышает 15 %.

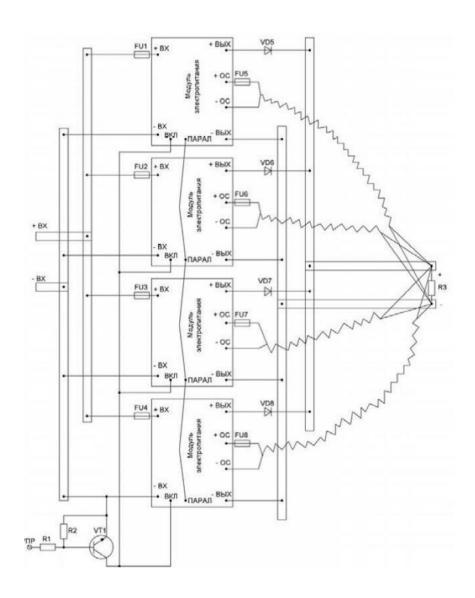


Рисунок 7.5 — Схема подключения модулей электропитания при параллельной работе

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Подпись и дата

Инв. № дубл.

Взам. инв. №

Подпись и дата

Инв. Nº подл.

- 7.11 В качестве диодов VD5...VD8 применяются диоды Шоттки, имеющие минимальное падение напряжения. Их максимальное обратное напряжение должно быть в 1,5...2 раза выше, чем номинальное выходное напряжение модулей. Максимальный прямой ток диодов должен минимум в 2 раза превышать выходной ток модуля. Предохранители FU1...FU4 должны быть рассчитаны на ток не менее чем в 2 раза превышающий, пусковой ток модулей.
- 7.12 Предохранители на входе и разделительные диоды изолируют неисправный модуль в случае отказа от остальной системы электропитания.
- 7.13 На транзисторе VT1 реализована функция дистанционного включения/выключения.
- 7.14 Для параллельной работы рекомендуется использовать модули с одинаковым номинальным выходным напряжением.

7.15 Использование функции выносной обратной связи

елей и одинисти и одини одини и одини и одини один

Применение функции выносной обратной связи позволяет компенсировать падение

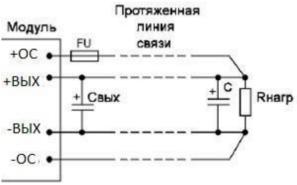


Рисунок 7.6 – Реализация функции выносной обратной связи

- 7.15.1 Величина емкости конденсатора С зависит от динамических характеристик нагрузки. Суммарная емкость конденсаторов C_{BblX} и С не должна превышать значений, приведенных в таблице 7.3.
- 7.15.2 В случае, когда функция выносной обратной связи не используется, выводы «+ОС» и «-ОС» необходимо напрямую соединить с выводами «+ВЫХ» и «-ВЫХ» соответственно.
- 7.15.3 Категорически запрещается включение и эксплуатация модуля с неподключенными выводами «+OC» и «-OC».
- 7.15.4 Категорически запрещается коммутировать выходные цепи модуля во включенном состоянии при подключенных выводах «+OC» и «-OC».
- 7.15.5 Рекомендуется устанавливать предохранители на ток от 0,1 до 0,125 А в цепи выносной обратной связи для исключения выхода из строя цепей управления при обрыве цепи нагрузки (при включенной цепи выносной обратной связи).
 - 7.16 Использование функции подстройки выходного напряжения.
- 7.16.1 Подстройка выходного напряжения в диапазоне не менее \pm 5 % в модулях, имеющих вывод «РЕГ» может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу "-ВЫХ" (для увеличения выходного напряжения, см. рисунок 7.7) или к выводу «+ВЫХ» (для уменьшения выходного напряжения, см. рисунок 7.8).

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Инв. № дубл.

ИНВ.

Взам.

Подпись и дата

№ подл.

ТЛДР.436610.005 ТУ

7.16.2 Для увеличения выходного напряжения рекомендуется использовать значения сопротивлений в диапазоне от 4,7 кОм до 47 кОм, для уменьшения выходного напряжения у модулей с выходным напряжением 3 В рекомендуется использовать значения сопротивлений в диапазоне от 750 Ом до 7,5 кОм, у модулей с выходным напряжением 5В — от 4,7 кОм до 47 кОм, у модулей с выходным напряжением 12 В — от 75 кОм до 750 кОм, у модулей с выходным напряжением 24 В — от 240 кОм до 2,4 МОм, у модулей с выходным напряжением 48 В — от 560 кОм до 5,6 МОм (данные приведены как справочные). Точный номинал резистора определяется экспериментально в процессе отработки аппаратуры.

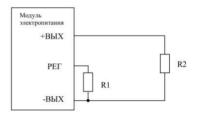


Рисунок 7.7 – Увеличение выходного напряжения

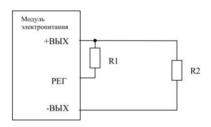
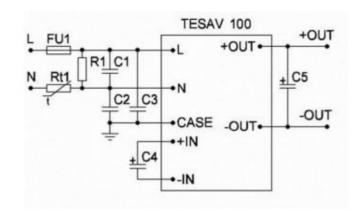


Рисунок 7.8 – Уменьшение выходного напряжения

- 7.17 Выводы модулей допускают их покрытие после пайки любым типом лака, используемым для покрытий паяных соединений, например, цапонлаком.
- 7.18 Рекомендации по подбору конвекционного радиатора приведены на официальном сайте предприятия изготовителя в разделе «Документация».
 - 7.19 При установке модулей в аппаратуре допускается:
 - обрезка вывода «ВКЛ/ВЫКЛ» заподлицо с поверхностью корпуса;
- обрезка остальных выводов, при этом оставшаяся длина должна быть не менее 3 мм от поверхности корпуса.


При обрезке выводов необходимо применять специальные шаблоны для обеспечения неподвижности выводов между местом обрезки и корпусом модуля. Кручение выводов вокруг оси не допускается.

- 7.20 Допускается промывка поверхности модулей спиртобензиновой смесью.
- 7.21 Запрещается длительная эксплуатация модуля (более одной минуты) при токах нагрузки, превышающих номинальные.

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Приложение 1

Схема измерений электрических параметров

Для сети "230", АС 50 Гц или DC

C1	0.15 uF 275VAC, X2 class
C2, C3	2200 pF 250VAC, Y2 class
R1	470 kOhm 0.5W
Rt1	NTC 15Ω 3A
FU1	6.3A 250V
C4	120 uF 400 V для НКУ и 100% нагрузки
C5	Tantalum, Low ESR

Рисунок 7.9 – Схема измерений

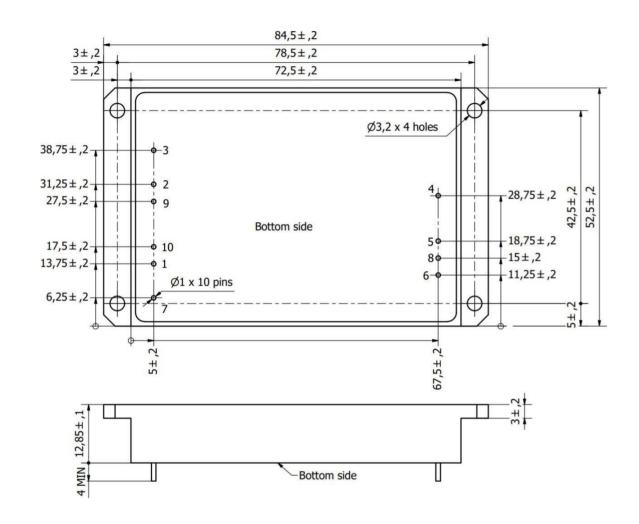
Подпись						
Инв. № дубл.						
Взам. инв. №						
Подпись и дата						
Инв. № подл.	Изм.	Лист	№ докум.	Подп.	Дата	ТЛДР.436610.005 ТУ 39

Таблица 7.4 – Перечень средств измерения и испытательного оборудования*

№ п/п	Наименование, тип	Погрешность измерения	Позиционные обозначения для приложений Р и С
1	Весы РН–6Ц13У	± 5 Γ	_
2	Штангенциркуль	0,05 мм	_
3	Мегомметр Ф4102/1-1М	1,5 %	_
4	Универсальная пробойная установка УПУ-10	± 4 %	-
5	Вольтамперметр М2038	± 0,5 %	P1, P6, P7
6	Вольтметр универсальный В7-40	± 0,2 %	P2P5
7	Источники напряжения постоянного тока Б5-66M	± 0,5 %	G1,G2
8	Реостат РСП-2У3 исп.19	_	R1R6
9	Осциллограф GOS-620	_	P8
*	Понуму отод новонного из нестанования		

^{* —} Допускается параллельно-последовательное включение источников напряжения постоянного тока типа Б5-66М или Б5-47.

Допускается параллельно-последовательное включение различных реостатов.


Допускается использование других средств измерений с погрешностями не более указанных в таблице, а также аппаратуры и элементов других типов с параметрами, обеспечивающими требуемые режимы работы блоков.

Инв. N ^е подл.	Подписьидата	Взам. инв. №	Инв. № дубл.	Подписьид

Изм.	Лист	№ докум.	Подп.	Дата

	1	2	3	4	5	6	7	8	9	10
ĺ	+BX	-BX	ВКЛ	+ВЫХ	-ВЫХ	КОРПУС	КОРПУС	ADJ	L	N

Таблица соответствия выводов

Габаритные, присоединительные и установочные размеры модуля

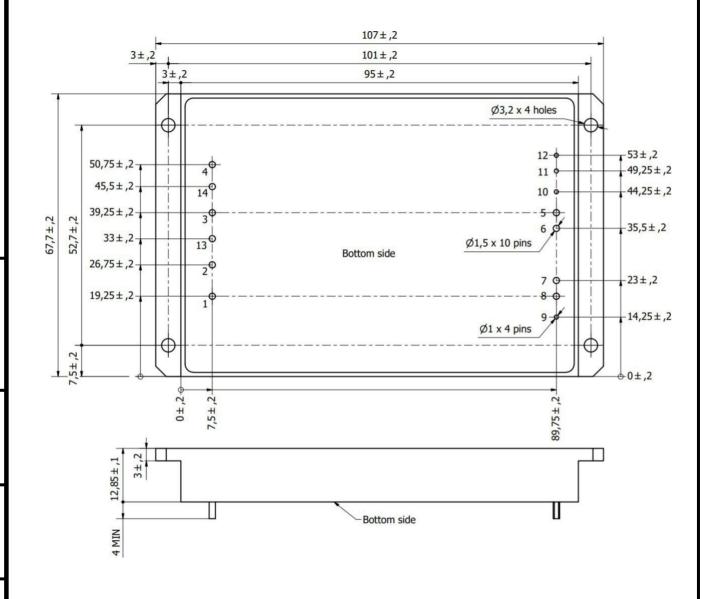
Исполнение с фланцами

					Γ
					l
Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата	

Подпись и дата

Инв. № дубл.

Взам. 1


Подпись и дата

Инв. № подл.

ТЛДР.436610.005 ТУ

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
E	ВКЛ	-BX	+BX	КОРП	-ВЫХ	-ВЫХ	+ВЫХ	+ВЫХ	+RS	-RS	ADJ	ПАРАЛ	L	N

Таблица соответствия выводов

Габаритные, присоединительные и установочные размеры модуля

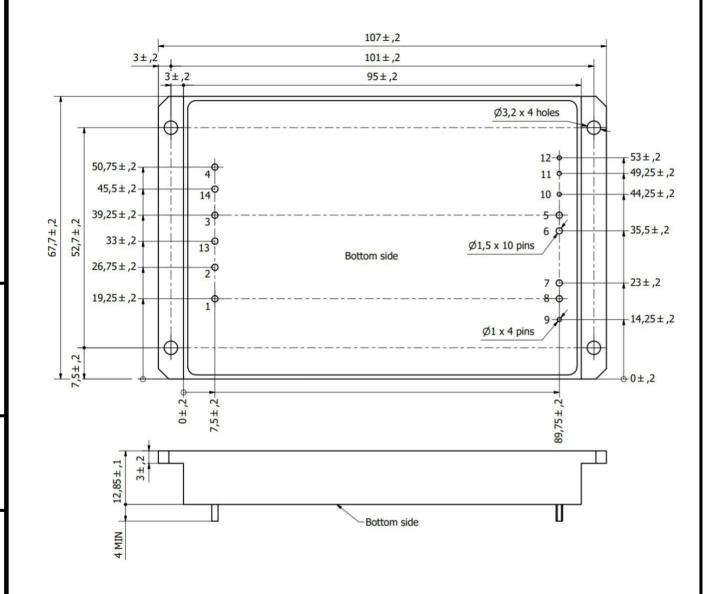
Исполнение с фланцами

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Подпись и дата

Инв. № дубл.

инв. №


Взам.

Подпись и дата

Инв. № подл.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
ВКЛ	-BX	+BX	КОРП	-ВЫХ	-ВЫХ	+ВЫХ	+ВЫХ	+RS	-RS	ADJ	ПАРАЛ	L	N

Таблица соответствия выводов

Габаритные, присоединительные и установочные размеры модуля

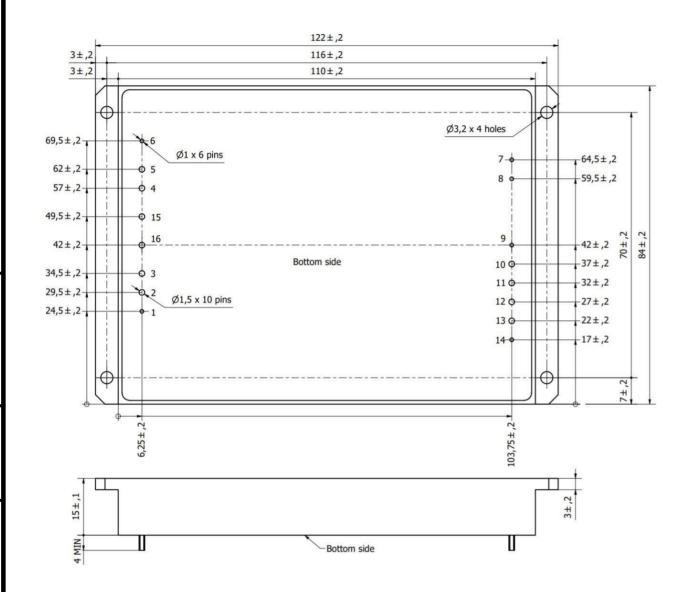
Исполнение с фланцами

Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата

Подпись и дата

Инв. № дубл.

Взам. инв.


Подпись и дата

Инв. № подл.

ТЛДР.436610.005 ТУ

1	2,3	4,5	6	7	8	9	10,11	12,13	14	15	16
ВКЛ	-BX	+BX	КОРП	ПАР	РЕΓ	-RS	-ВЫХ	+ВЫХ	+RS	L	N

Таблица соответствия выводов

Подпись и дата

Инв. Nº дубл.

%

Взам. инв.

Подпись и дата

Инв. № подл.

		т аоар	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	рисос	динительные и установочные размеры модуля	
					Исполнение с фланцами	
					THUD 426610 005 TV	Лист
	_	4.00		7	ТЛДР.436610.005 ТУ	44
Изм.	<i>Лис</i> т	№ докум.	Подп.	Дата		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Н	омера лист	ов (стран	иц)	Всего	Всего листов № (стр.) в доку- доку- мента	Входящий № сопроводительного документа. Дата	Под-пись	
Изм	и. Изменен- ных	Заменен-	Новых	Аннули- рованных	(стр.) в доку-				Дата
		I				I	l	I	1
			\blacksquare		ТЛЛР 4	36610	0.005 ТУ		Ли
Изм. Ј	Лист № доку	м. Подп.	Дата		± • ± <u>+ 4</u> ± • □				4: